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Abstract. We consider the behaviour of multi-state neural networks averaged over an extended
monitoring period of their dynamics. Pattern reconstruction by clipping the activities is proposed,
leading to an improvement in retrieval precision.

1. Introduction

Artificial neural networks have been widely applied to memorize and retrieve information.
Recently, a study ofactivity dynamicsin binary neural networks showed that information
can be retrieved much more accurately when the network behaviour is monitored over an
extended period of time, rather than at a particular instant [1]. Furthermore, the basins of
attraction can be widened, and the storage capacity can be increased.

To understand this, we note that the instantaneous network state may be degenerated
by the presence of noises (arising from the interference of concurrently stored information,
or the stochasticity of the retrieval dynamics). In contrast, measuring the averaged network
state, or thetemporal activities, allows noises to be averaged out. In general, their
distributions are strongly biased in the direction of the stored patterns. We may then
reconstruct the information bits by quantizing the activities, which is referred to asactivity
clipping.

For example, an information bit may be+1 or −1 in two-state networks. During the
dynamical evolution, the bit may flip between the two states. If it spends more time, on
average, in the+1 state, then it has a positive temporal activity. Activity clipping is done
by assigning the retrieved state to be the more frequently occurring one, namely+1 in this
example. This is equivalent to making a Bayesian decision on the information bits. In
extremely diluted binary networks, the improvement in retrieval quality is so drastic that,
for example, the overlap undergoes a discontinuous transition from the retrieval phase to
the non-retrieval phase, in contrast to the continuous one for ordinary dynamics [2]. More
sophisticated sequences of activity clipping lead to further improvement.
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Since multi-state networks and analogue networks are widely implemented to process
information with a graded or grey scale, it is practically useful to generalize such techniques
of pattern reconstruction from two-state to multi-state networks [3–5]. However, the
generalization to multi-state networks is not so straightforward. One major problem is
the determination of the quantization boundaries for clipping the temporal activities, since
there is much more freedom in multi-state networks. The present paper addresses this
problem.

Concretely, we study the dynamics of temporal activity in multi-state neural networks,
and propose two schemes of activity clipping: the maximum likelihood clipping and
Bayesian clipping. In the maximum likelihood clipping, one monitors the dynamical state
of each neuron, and reconstructs the pattern bit on a node by assigning the most frequently
occurring state to it. Though this clipping scheme sounds natural, it does not make full
use of the information available in the activity distribution. The quantization boundaries
for activity clipping turn out to be independent of the network parameters such as the
storage level, and hence the scheme is inflexible. Thus, we also propose the Bayesian
clipping scheme, in which one reconstructs the pattern bit by assigning the state with the
maximum Bayesian probability to it, given its dynamical activity and a knowledge of the
state dependence of the activity distribution. This results in quantization boundaries for
activity clipping which adjust with the network parameters. Indeed, it yields excellent
retrieval quality.

In section 2 we introduce the relevant dynamical variables for activity dynamics in two
kinds of network architecture with exactly solvable dynamics: extremely diluted networks
[6] and layered networks [7]. In section 3 we discuss freezing transitions [2], and in
sections 4 and 5 we introduce the maximum likelihood clipping and Bayesian clipping,
respectively. Simulation results are presented in section 6, followed by the conclusion in
section 7. In the appendix we derive the evolution relations describing the dynamics of
temporal activity.

2. Activity dynamics in multi-state neural networks

2.1. A review of previous results

Consider a layered neural network composed of multi-state neurons arranged in layers, each
layer containingN neurons. A neuron can take values in a discrete setS ≡ {−1 = s1 <
s2 < · · · < sQ−1 < sQ = +1}. The elements in the set are equidistant in general. Each
neuron in layert is unidirectionally feeding all neurons on layert+1. Given a configuration
{σj (t), j = 1, 2, . . . , N}, the local fieldhi(t + 1) in neuroni on layert + 1 is

hi(t + 1) =
∑
j

Jij (t + 1)σj (t) (1)

whereJij (t + 1) is the strength of the coupling from neuronj on layer t to neuroni on
layer t + 1. The state{σj (t + 1)} of layer t + 1 is determined by the state{σj (t)} of the
previous layert according to the zero-temperature updating rule

σi(t + 1) = g(hi(t + 1)) (2)

where

g(h) ≡ sk for b(sk−1+ sk) 6 h 6 b(sk + sk+1) k = 1, . . . ,Q (3)

with b > 0 ands0 ≡ −∞, sQ+1 ≡ ∞. For finiteQ, g(h) is a series of step functions. The
gain parameter,b−1, controls the average slope of the transfer functiong(h).
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The network receives an input configuration in the first layer{σj (t = 1)}. Updating
in subsequent layers then proceeds in parallel: at the next time step, the second layer is
updated according to rule (2), and so on.

The stored patterns on layert are a collection of independent and identically distributed
random variables (iidrv){ξµi (t) ∈ S}, µ ∈ {1, 2, . . . , p = αN}. Their distribution is
specified by the probabilitiesp(sk) that ξµi (t) = sk, k = 1, . . . ,Q, with the normalization∑

k p(sk) = 1. In this paper we are interested in uniform pattern distributions with zero
mean. For neural networks with high connectivity, it turns out that only the variance
A = Var[ξµi (t)] is relevant to the network dynamics.

The task of the layered network is to retrieve, with high precision, a given pattern on
each layer when a noisy version of that pattern is input in the first layer. To achieve this
the pattern information has to be encoded in the synaptic couplings between adjacent layers
according to some learning rule. Here we consider the Hebb rule

Jij (t + 1) = 1

NA

∑
µ

ξ
µ

i (t + 1)ξµj (t). (4)

The Hebb rule is not the most efficient learning rule. Previous studies have shown that it
has a low retrieval precision and storage capacity [4], and other better learning rules exist.
However, as will be shown, activity clipping is able to improve the retrieval precision in
the retrieval phase.

Since the patterns on different layers are chosen independently, the simple form of the
Hebb rule allows the possibility of an analytic treatment of the dynamics. The following
recursion relations were obtained in [4], starting from the initial data{σj (1)} being a
collection of iidrv and correlated with only one stored pattern, sayµ = 1,

mµ(t + 1) = δµ,1 1

A

〈〈
ξ1(t + 1)

∫
Dz g

(
ξ1(t + 1)m1(t)+

√
D(t)z

)〉〉
(5)

a(t + 1) =
〈〈 ∫

Dz g2
(
ξ1(t + 1)m1(t)+

√
D(t)z

)〉〉
(6)

D(t + 1) = αa(t + 1)+
[〈〈 ∫

Dz zg
(
ξ1(t + 1)m1(t)+

√
D(t)z

)〉〉]2

. (7)

wheremµ(t), a(t) andD(t) are theoverlap, spatial activityandnoise, respectively defined
as

mµ(t) ≡ lim
N→∞

1

NA

∑
i

ξ
µ

i (t)σi(t) (8)

a(t) ≡ lim
N→∞

1

N

∑
i

σ 2
i (t) (9)

D(t) ≡ lim
N→∞

1

N

∑
i

[hi(t + 1)− ξ1
i (t + 1)m1(t)]2. (10)

In dilute networks each neuron,σi , is fed byC randomly chosen neurons,σj , through
the synaptic weightsJij . The updating rule is still given by (2), but forhi(t) =

∑
j Jij σj (t),

the summation runs over the chosen neurons feeding neuroni. For the Hebb rule storing
p ≡ αC patterns,Jij =

∑
µ ξ

µ

i ξ
µ

j /CA.
The evolution equations can be analytically derived for extremely diluted networks

where it can be shown (see, e.g. [8]) that the probability of two sites,i andi ′, having disjoint
clusters of ancestors approaches exp(−C2n/N) for N � 1 with n being the number of time
steps in the dynamics. This implies that forC � lnN , feedback is completely suppressed
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irrespective ofn. In practice it turns out that correlations appear whenn ≈ O(lnN/ lnC).
So unless we are very near the region of a phase transition the number of time steps
required in order to reach the steady state is mainly small. In this case the condition for
strong dilution can be relaxed to lnC << lnN for N → ∞ [9]. The evolution equations
governing the parallel dynamics for extremely diluted networks are given by [6, 9]

mµ(t + 1) = δµ,1 1

A

〈〈
ξ1
∫

Dz g
(
ξ1m1(t)+

√
αa(t)z

)〉〉
(11)

a(t + 1) =
〈〈 ∫

Dz g2
(
ξ1m1(t)+

√
αa(t)z

)〉〉
. (12)

2.2. Dynamical variables for activity dynamics

Until now we have been considering the network dynamics for a single initial condition.
To understand the temporal activity of a neuron in the network, consider anensemble
of input configurations in layered networks [1], or anensembleof initial conditions in
dilute networks [10]. The ensemble averaged state of a node is called itsactivity. In
layered networks we may consider presenting an input configuration at each time step, and
the ensemble averaged network behaviour becomes the temporal averaged behaviour. In
dilute networks, the network state converges to a single chaotic attractor for a single set
of macroscopic variables [2], instead of the cloud of attractors suggested in earlier studies
[6], therefore the ensemble averaged asymptotic state is the same as the temporal averaged
state in the attractor. We will hereafter treat temporal averaging and ensemble averaging as
being equivalent, and refer to them asactivity dynamics.

In activity dynamics, there are three relevant dynamical variables: the overlap,m(t),
the dynamic noise,u(t), and the frozen noisev(t). The dynamic noise is the variance of
the local fields about their ensemble averaged values. It describes the dynamical variations
from one input configuration to another within the ensemble. The frozen noise is the
variance of the temporal averaged local fields about their mean value when the nodes,i, are
sampled. It describes the spatial variations independent of particular input configurations
in the ensemble. As will be shown, the sum of the two noise terms,u(t) + v(t), is the
noise termD(t) introduced previously for the ordinary dynamics. The distinction between
the dynamic and frozen nature of the noise is irrelevant for ordinary dynamics, since it
describes theinstantaneousstate of the network. However, this disctinction is needed to
describe the activity dynamics, since they play different roles in determining the temporal
activity of a node.

Consider an ensemble of input configurations that are a collection of iidrv with overlap
and variance respectively given by (8) and (9) fort = 1, µ = 1. It is natural to split the
local field on sitei into two terms

hi(t + 1) =
∑
j

Jij (t + 1)〈σj (t)〉 +Xi(t + 1) (13)

with

Xi(t + 1) =
∑
j

Jij (t + 1)(σj − 〈σj (t)〉). (14)

The brackets〈 〉 denote the average over this ensemble. When varying the input
configurations the first term on the r.h.s. of equation (13) remains constant whileXi(t + 1)
fluctuates around its mean zero. Inserting the learning rule (4) for the couplings into
equation (14) and noting that the patterns{ξµi (t + 1)} on layert + 1 are uncorrelated with



Temporal activity in neural networks 2641

the patterns{ξµi (t)} and the state{σi(t)} on layer t , we see thatXi(t + 1) is a Gaussian
random variable with mean zero and varianceu(t) given by

u(t) = 1

N2A

∑
µ

∑
j,k

ξ
µ

j (t)ξ
µ

k (t)[〈σj (t)σk(t)〉 − 〈σj (t)〉〈σk(t)〉]. (15)

Note that the dynamic noise,u(t), is now independent of the node labeli, and is determined
only by the variables on the previous layert .

The temporal averaged local fields in (13) can in turn be decomposed into a signal and
a noise term ∑

j

Jij (t + 1)〈σj (t)〉 = ξµi (t + 1)m(t)+ Yi(t + 1) (16)

with

m(t) = 1

NA

∑
j

ξ1
j (t)〈σj (t)〉 (17)

Yi(t + 1) = 1

NA

∑
µ>1

∑
j

ξ
µ

i (t + 1)ξµj (t)〈σj (t)〉. (18)

Since {ξµi (t + 1)} are uncorrelated with both{〈σj (t)〉} and {ξµj (t)}, Yi(t + 1) becomes a
Gaussian random variable with mean zero and variance

v(t) = 1

N2A

∑
µ>1

∑
j,k

ξ
µ

j (t)ξ
µ

k (t)〈σj (t)〉〈σk(t)〉. (19)

Again, note that the frozen noisev(t) is independent of the node labeli, and is determined
only by variables on the previous layert .

Recursion relations describing the dynamics of temporal activity in the network are, as
derived in the appendix,

m(t + 1) = 1

A

〈〈
ξ(t + 1)

∫
Dz g

(
ξ(t + 1)m(t)+

√
u(t)+ v(t)z

)〉〉
(20)

u(t + 1) = α[a(t + 1)− C(t + 1)]

+ u(t)

u(t)+ v(t)
[〈〈 ∫

Dz zg
(
ξ(t + 1)m(t)+

√
u(t)+ v(t)z

)〉〉]2

(21)

v(t + 1) = αC(t + 1)+ v(t)

u(t)+ v(t)
[〈〈 ∫

Dz zg
(
ξ(t + 1)m(t)+

√
u(t)+ v(t)z

)〉〉]2

.

(22)

We note thatu(t) + v(t) = D(t), the noise term (10) in ordinary dynamics (with a single
input configuration).

For the extremely diluted networks we recall that the architecture is a directed tree so
that the correlations among the ancestors feeding a given node are negligible. Therefore the
recursion relations can easily be read off from those for the layered feedforward networks
by neglecting the off-diagonal terms in the dynamic and frozen noises, arriving at

m(t + 1) = 1

A

〈〈
ξ

∫
Dz g

(
ξm(t)+

√
u(t)+ v(t)z

)〉〉
(23)

u(t + 1) = α[a(t + 1)− C(t + 1)] (24)

v(t + 1) = αC(t + 1). (25)
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3. Freezing transitions

To measure the performance of the temporal averaged behaviour of the network, it is
interesting to consider the distribution of the temporal averaged states for a given pattern
bit ξ being one of theQ possible states:

Pt(f1, . . . , fQ|ξ) = lim
N→∞

Q

N

∑
ξ1
i (t)=ξ

Q∏
k=1

δ[〈δg(hi ),sk 〉 − fk] (26)

wherefk is the fraction of time a given node stays in statesk. For perfect retrieval, the
distribution should be a delta peak atfk = δξ,sk . Since the local fieldhi(t+1) is a Gaussian
variable with meanξm(t), temporal varianceu(t) and spatial variancev(t), we have

Pt+1(f1, . . . , fQ|ξ) =
∫

Dy
∏
k

δ

[
1

2
erf

(
b(sk + sk+1)− ξm(t)−

√
v(t)y√

2u(t)

)
− 1

2
erf

(
b(sk−1+ sk)− ξm(t)−

√
v(t)y√

2u(t)

)
− fk

]
. (27)

It is often convenient to merely consider the distribution function of therth moment,ηri ,
of the temporal activities of nodei, defined by

ηri ≡
Q∑
k=1

〈δg(hi ),sk 〉srk . (28)

The distribution function is given by

D(r)t+1(ηr |ξ) =
∫

Dy δ

(
ηr −

∫
Dx gr

(
ξm(t)+

√
u(t)x +

√
v(t) y

))
. (29)

Simulation results in figures 1(a) and (b) show the evolution of the activity distributions
D(1)(η1|ξ) for the pattern bitsξ = 1, 0 up to 20 layers in the layeredQ = 3 network with
uniformly distributed stored patterns (A = 2

3). It is evident that the activity distribution
is highly dependent on the different pattern bits. For instance, the distribution forξ = 1
is strongly biased towards activities near the value of 1, whereas the distribution is much
more even for the case ofξ = 0. In later sections this differentiation will be utilized for
improving the precision in pattern reconstruction.

We note that in the activity distributions, there is a divergence occurring at the values of
η1 = ±1. We say that the network is in apartially frozen phase, since this corresponds to
nodes with overwhelming probability of aligning with (or against) the pattern bits throughout
the ensemble averaging process. If no such divergence appears, we say that the network is
in an unfrozenphase. As will be shown, there is afreezing transitionfrom the unfrozen
phase to the partially frozen phase asα decreases in extremely diluted networks.

We remark that whileretrieval andfreezing transitionsare related to the non-ergodicity
of the network dynamics, they are different notions. Retrieval implies that the dynamics
converges to a non-ergodic attractor highly correlated with one of the stored patterns, which
may be a fixed point, a cycle or a chaotic attractor. Thus, a retrieved state may either be
in a partially frozen phase (which corresponds to a less chaotic attractor) or an unfrozen
phase (which corresponds to a more chaotic attractor). Similarly, a non-retrieval attractor
may either be unfrozen or partially frozen, though it turns out that the non-retrieval states
in extremely diluted networks are unfrozen.

To consider the conditions for the occurrence of a partially frozen phase, we restrict
ourselves to networks withQ = 3 with uniformly distributed stored patterns (A = 2

3). As
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Figure 1. The activity distributionD(1)(η1|ξ) in layered networks fromt = 1 to t = 20 for
(a) ξ = 1 and (b) ξ = 0. We have usedN = 300,p = 40, b = 0.3, m(1) = 0.3, a(1) = 0.3,
averaged over 300 samples with an ensemble size of 500 in the simulations.

t → ∞ the macroscopic variablesm(t), u(t) and v(t) converge to the fixed-point values
m, u andv, respectively. The activity distribution obtains the form

D(1)(η1|ξ) =
√
u

v

exp[− u
v
(Yη − ξm√

2u
)2]

exp[−(Yη + b√
2u
)2] + exp[−(Yη − b√

2u
)2]

(30)

whereYη is the solution of the equation

erf

(
b√
2u
+ Y

)
− erf

(
b√
2u
− Y

)
= 2η1. (31)

If u < v, the reduced distribution diverges for anyξ atη1 = ±1, corresponding to a partially
frozen phase in the system. Foru > v, these divergences disappear, corresponding to an
unfrozen phase. As shown in figure 2 for extremely diluted networks, a freezing transition
exists for low values ofb, whereb is the inverse gain parameter (forQ = 3, b is also the
zero-step size, i.e. the local field for the pattern bitξ = 0 lies between±b). The entire non-
retrieval phase is unfrozen. This is analogous to the freezing transition in two-state networks
[2]. On the other hand, in feedforward layered networks, there is only the partially frozen
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Figure 2. The freezing transition (dotted curve) in the space of the storage levelα and the
zero-step sizeb for the extremely diluted network. The full curve represents a continuous
transition from the retrieval to the non-retrieval states while the broken curve represents a
discontinuous one. PF, UF and NR stand for the partially frozen, unfrozen and non-retrieval
phases respectively.

phase in the entire retrieval regime. It seems that in the layered feedforward networks the
correlation effects among different sites enhance the partially frozen phase.

However, there is a difference between two- and three-state networks in the non-retrieval
regime. In two-state networks the system is in the unfrozen phase for both the extremely
diluted structure and the layered structure (in the asymptotic limit). In contrast, for three-
state networks there is a partially frozen phase in the layered network for any value ofb,
and in the diluted network forb > 0.48.

4. The maximum likelihood clipping rule

As we have seen, neurons are not completely frozen in either extremely diluted or in layered
feedforward three-Ising networks. In general, the neurons keep flipping. If one monitors
a single neuron at the stationary state over an extended period, one obtains a sequence of
neuron states whose statistics is described by the first and second momentsη1, η2.

The problem is then how to select out of this sequence the state that is the same as
the neuron state in the retrieved pattern. One of the natural choices is to take the state
that appears most frequently in the hope that it is strongly correlated with the state in the
pattern:

σM = sk : k = arg maxl(fl). (32)

For three-state networks the temporal activitiesfk can be expressed in terms of the first and
second momentsη1 andη2. Since the fractions of time for a node to be in states±1, 0 are
(η1± η2)/2 and 1− η2 respectively, the maximum likelihood rule can be summarized as

σM = sign(η1)2(3η2+ |η1| − 2). (33)

Using the activity distribution (29), one may calculate the overlap and spatial activity of
the maximum likelihood clipping:

mM = 1

2
erf

(
m√
2v
+
√
u

v
YM

)
+ 1

2
erf

(
m√
2v
−
√
u

v
YM

)
(34)
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aM = 1− 1

3
erf

(
m√
2v
+
√
u

v
YM

)
+ 1

3
erf

(
m√
2v
−
√
u

v
YM

)
− 1

3
erf

(√
u

v
YM

)
(35)

whereYM is the positive solution of the equation

erf

(
b√
2u
+ Y

)
+ 2 erf

(
b√
2u
− Y

)
= 1 (36)

in its region of existence erf(b/
√

2u) > 1
3, and zero otherwise. Retrieval precision can be

measured by the performance

F(t) ≡ lim
N→∞

1

N

∑
i

δξ1
i (t),σi (t)

(37)

which counts the relative number of correct bits. For the maximum likelihood clipping rule,
the result is

FM = 1

3

[
1+ erf

(
m√
2v
−
√
u

v
YM

)
+ erf

(√
u

v
YM

)]
. (38)

For dilute networks atb = 0.2, figures 3(a)–(c) show that whenα is small, both the ordinary
and maximum likelihood curves are very close together. Asα approaches the critical storage
capacity,αc, there is a significant difference:mM remains finite whilem goes to zero.
This illustrates the advantage of the clipping procedure in precisely retrieving the non-zero
pattern bits. In fact, the improvement in retrieval precision is most marked just below
the storage capacity, where the maximum likelihood overlap undergoes a discontinuous
transition instead of the continuous one in the ordinary overlap. This behaviour has also been
found for extremely diluted binary networks [2]. However, the improvement in retrieval
precision is less marked for larger values ofb. Figures 4(a)–(c) show the relevant curves
with b = 0.4, where bothmM andm undergo a continuous transition.

For a sufficiently low value ofb and near the storage limit, maximum likelihood clipping
may suffer fromoverclipping, i.e. it fails to retrieve the zero pattern bits by mistakenly
clipping them to non-zero values. This can be seen from the clipping rule (33). When the
lower bound of the expression 3η2 + |η1| − 2 is positive, the clipped state can never be
zero. This happens when erf(b/

√
2u) > 1

3. As shown in figure 3(b) for b = 0.2, the spatial
activity of the maximum likelihood clipping becomes unity forα > 0.61, which means that
almost all states are either−1 or 1. This indicates that there is room for improvement for
the maximum likelihood clipping. For the case of the larger value ofb in figure 4(b), the
local interval for zero states is sufficiently wide, and zero clipped states are possible.

The retrieval quality of the maximum likelihood rule can also be measured by the
Hamming distance between the state and the retrieved pattern, i.e.〈[ξi(t)−σi(t)]2〉. It turns
out that in some region of the retrieval phase the maximum likelihood rule is not better than
ordinary dynamics. Figure 5 shows that region in the case of extremely diluted networks.

For layered feedforward networks the overlap,m, remains finite and the storage capacity
is rather small, implying that the maximum likelihood overlap and activity are rather similar
to the ordinary ones. A numerical calculation confirms this picture. Like the dilute network,
Hamming distances between the stored pattern and the retrieved pattern are often less in the
case of maximum likelihood clipping. However, there exist regions in which the maximum
likelihood clipping performs worse, showing that the clipping rule is not optimal.

5. The Bayesian clipping rule

The Bayesian clipping rule is better than the maximum likelihood rule. This improvement
is obtained by maximizing the (conditional) probability of the observed temporal activities,
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Figure 3. (a) The ordinary overlapm (dotted curve), the maximal likelihood overlapmM

(broken curve) and the Bayesian overlapmB (full curve) as a function ofα for b = 0.2 in
the extremely diluted network. (b) The corresponding spatial activities. (c) The corresponding
performances.
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Figure 4. As in figure 3 forb = 0.4.

which takes into account that the patterns are uniformly distributed instead of just counting
the most frequently appearing state. The posterior probability that the nominated pattern
at a given node isξ after the observation of the sequence of neuron states is given by
P(ξ |{ηr}) = D({ηr}|ξ)P (ξ)/P ({ηr}), according to the Bayesian rule. Considering models
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Figure 5. The region R is where the maximal likelihood Hamming distance is larger than the
ordinary one in the extremely diluted network.

in which the prior probabilities of the nominated pattern at a specific neuron beingξ = sk
are equal,P(ξ |{ηr}) is proportional toD({ηr}|ξ). Therefore the most probable Bayesian
state is given by taking the value ofξ having the maximum posterior probability, namely,

σB = arg maxξP (ξ |{ηr}) = arg maxξD({ηr}|ξ). (39)

According to (30) forQ = 3,

σB = sign(η1)2(|η1| − θB) (40)

θB = 1

2
erf

(
1
2m+ b√

2u

)
+ 1

2
erf

(
1
2m− b√

2u

)
. (41)

From this, one may calculate

mB = 1

2
erf

(
3m

2
√

2v

)
+ 1

2
erf

(
m

2
√

2v

)
(42)

aB = 1− 1

3
erf

(
3m

2
√

2v

)
(43)

F B = 1

3

[
1+ 2 erf

(
m

2
√

2v

)]
. (44)

For dilute networks these quantities are displayed in figures 3(a)–(c) for b = 0.2 and
figures 4(a)–(c) for b = 0.4. It is interesting to note that the Bayesian overlap undergoes a
first-order transition atαc for any b. Overclipping is not observed. This demonstrates the
superior performance of Bayesian clipping over ordinary dynamics and maximum likelihood
clipping. For low values ofb or α, one may note thatmB is lower thanm, indicating that the
non-zero bits are retrieved rather inaccurately by Bayesian clipping. However, this sacrifice
results in a higheroverall performance.

6. Simulations

In this section we compare the analytic results with simulations. For dilute networks, the
theoretical limit of lnC � lnN is difficult to realize in simulations. Hence, we will focus
on simulations of layered networks.
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To speed up the simulations, we apply a gauge transformation for the−1 bits and pattern
1 is assigned to haveξ1

i (t) = 1 for 16 i 6 2N/3 andξ1
i (t) = 0 for 2N/3 < i 6 N . The

input configurations are generated according to the six probabilitiesP(Si(1)|ξ1
i (t)), which

are determined by maximizing the entropy−∑Si (1),ξ1
i (1)

P (Si(1)|ξ1
i (1)) lnP(Si(1)|ξ1

i (1)),
subject to the constraints that the overlap ism(1) and the spatial activity isa(1). Another
technique to speed up the dynamics is to rewrite the local fields as

hi(t + 1) =
∑
j

Jij (t + 1)ξ1
j (t)+

2N/3∑
j=1

Jij (t + 1)(−δSj (t),0− 2δSj (t),−1)

+
N∑

j=2N/3+1

Jij (t + 1)(δSj (t),1− δSj (t),−1). (45)

In the expression of the local field, the first term corresponds to the value when layer
t perfectly retrieves pattern 1, and can be computed once for the entire ensemble. The
following terms are the corrections due to imperfect retrieval of pattern 1, and are the only
terms to be computed for every input configuration, thereby saving the computational efforts
when the retrieval errors are few.

As shown in figures 1(a) and (b), the difference in distribution allows a Bayesian
clipping procedure to be applied efficiently. The Bayesian clipping threshold can be
estimated by the crossover point of the two distributions on the same layer, which is
θB ≈ 0.44 asymptotically for the case of figures 1(a) and (b). Simulations with varying
clipping thresholds show that the clipped performance,F , is maximized around this value
of θB, confirming the validity of the clipping scheme.

Figure 6 shows the evolution of the performance,F , for both ordinary dynamics
and activity dynamics. In activity dynamics, the clipping threshold is varied and results
which maximize the performance,F , are chosen for presentation. The values of the
chosen thresholds roughly agree with the theoretical values of the Bayesian threshold, but
uncertainties are present due to the flatness of the performance,F , near their maxima.

Figure 6. The performance,F , for ordinary dynamics and clipped activity in layered networks.
Data points represent simulation results, full and broken curves represent analytic results for
clipped activity and ordinary dynamics respectively. We have usedN = 300,p = 30, b = 0.1,
m(1) = 0.6, a(1) = 0.4, averaged over 300 samples with an ensemble size of 500 in the
simulations.
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Figure 6 demonstrates that activity dynamics improves the retrieval precision. Analytic
results presented in the same figure agree with simulations.

7. Conclusion

We have studied two clipping schemes for activity dynamics, and found from both analysis
and simulation that Bayesian clipping is most effective in improving the retrieval precision.
The extent of improvement is most marked near the boundary of the retrieval phase at
low values of b, where the overlap vanishes continuously for ordinary dynamics, but
discontinuously for Bayesian clipped dynamics.

It is interesting to generalize the Bayesian clipping scheme to networks with weights
trained by learning rules more efficient than the Hebb rule. For example, in two-state
layered networks with the pseudo-inverse rule or the maximally stable rule, perfect retrieval
by activity dynamics is possible. One may also considerQ-state (Q > 3) and analogue
networks [5]. ForQ-state networks withQ > 3, a set of thresholds have to be introduced,
whereas in analogue networks the clipping scheme may consist of a mapping function from
the temporal activities to the analogue states of the nodes. These clipping schemes remain
to be studied.

Recently, more sophisticated clipping schemes, such as selective freezing and sequential
selective freezing, have been introduced [1]. Besides improving the retrieval precision, they
can also extend the basins of attraction, and even increase the storage capacity. Perfect
retrieval is possible in principle, given sufficient activity statistics. The potentials of these
procedures in multi-state networks remain to be explored.

The clipping techniques are useful in applications, for example the retrieval of two-
dimensional patterns using line-by-line temporal codes. A layered network ofL layers
andN nodes on each layer can be used to process two-dimensional patterns of widthN

and lengthL, the first layer being an edge where, and only where, external information
is supplied. If different edge specimens are collected and the network is run repeatedly,
the clipping of temporal activities enables the entire pattern to be retrieved precisely, even
when external cues are inaccessible in the interior region of the pattern.
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Appendix. Recursion relations for activity dynamics

First, from definition (8) and the updating rule (2) one easily obtains the recursion relation
(20) form(t).

Secondly, for the dynamic noiseu(t + 1), we first split (15) into two terms: a diagonal
term coming from the same sites,j = k, and an off-diagonal term arising from different
sites, j 6= k. In the diagonal term, first and second moments of the ensemble averaged
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states appear. Hence, we introduce the temporal activitya(t) and the correlationC(t)

a(t) = lim
N→∞

1

N

∑
i

〈[σi(t)]2〉 (46)

C(t) = lim
N→∞

1

N

∑
i

[〈σi(t)〉]2. (47)

In the limit N →∞, the diagonal term becomesα(a(t) − C(t)). Thenth moment of the
state on layert + 1 with respect to the ensemble can be written as

〈[σi(t + 1)]n〉 =
∫

Dx gn
(∑

j

Jij (t + 1)〈σi(t)〉 +
√
u(t)x

)
(48)

leading to the results

a(t + 1) =
〈〈 ∫

Dz g2
(
ξ(t + 1)m(t)+

√
u(t)+ v(t)z

)〉〉
(49)

C(t + 1) =
〈〈 ∫

Dy

[ ∫
Dx g

(
ξ(t + 1)m(t)+

√
u(t)x +

√
v(t)y

) ]2〉〉
. (50)

In the off-diagonal term, it is important to note that contributions from different sites,
j and k, do not vanish in layered networks because they receive shared information from
common ancestor nodes in the previous layer. This is in contrast to networks with directed
tree structures, such as in extremely diluted networks, in which contributions from different
sites,j and k, can be considered independent. However, the correlations between sitesj

andk are weak, allowing a Taylor expansion of〈σl(t +1)σi(t +1)〉− 〈σl(t +1)〉〈σi(t +1)〉
in terms of the small covariance

〈Xj(t + 1)Xk(t + 1)〉 = 1

N2A2

∑
µ,ν

∑
l,i

ξ
µ

j (t + 1)ξ νk (t + 1)ξµl (t)ξ
ν
i (t)

×[〈σl(t)σi(t)〉 − 〈σl(t)〉〈σi(t)〉]. (51)

These results lead to the evolution equation (21).
Finally, the recursion relation for the frozen noisev(t+1) can be obtained analogously.

The diagonal term in (19) withj = k becomesαC(t + 1). In the off-diagonal term with
j 6= k, again the weak correlation betweenξµj (t + 1) and 〈σj (t + 1)〉 can be seen from
writing

Yj (t + 1) = Y (µ)j (t + 1)+ ξµj (t + 1)
1

NA

∑
k

ξ
µ

k (t)〈σk(t)〉. (52)

Here all dependence on patternµ are contained in the last term, and the first term is the
field fluctuations if patternµ was absent. The initial condition implies that the correlations
between the network state and the non-condensed patternsµ > 1 are weak. Hence the
last term is O(1/

√
N). Expanding〈σj (t + 1)〉 with respect to this term finally leads to the

recursion relation (22).
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